Topic for

Semester - 4, Paper - PHSA CC8

SOLVING 1D HEAT DIFFUSION EQUATION NUMERICALLY

Let's say we have a plane wall with a certain surface temperature $\mathrm{T}=50^{\circ} \mathrm{C}$ on one side and have a different surface temperature $\mathrm{T}=25^{\circ} \mathrm{C}$ on another side. Let's assume thickness of the wall is $L=0.2 \mathrm{~cm}$.

We will now break this plane wall into discrete sections of thickness $\Delta \mathrm{x}=0.02 \mathrm{~cm}$.

So, we are basically dividing the wall by $\mathrm{n}=10$ discrete elements.

Now denote the leftmost element at $x=0$ by $i=0$, the next element by $i+1=1$ and so on. The rightmost element is denoted by $\mathrm{i}=\mathrm{n}-1=9$.

Let us now write the heat diffusion equation.

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

Now we will discretize this equation.
We can write, $\frac{\partial T}{\partial t}=\frac{T(t+\Delta \mathrm{t})-T(t)}{\Delta \mathrm{t}} \quad$ Say $\Delta \mathrm{t}=\mathrm{dt}=0.1$
Now, $\frac{\partial^{2} T}{\partial x^{2}}=\frac{\frac{\partial T}{\partial x}(\text { at } x)-\frac{\partial T}{\partial x}(\text { at } x-\Delta \mathrm{x})}{\Delta \mathrm{x}}$

$$
=\frac{\frac{T(x+\Delta \mathrm{x})-T(x)}{\Delta \mathrm{x}}-\frac{T(x)-T(x-\Delta \mathrm{x})}{\Delta \mathrm{x}}}{\Delta \mathrm{x}}=\frac{T(x+\Delta \mathrm{x})-2 T(x)+T(x-\Delta \mathrm{x})}{(\Delta \mathrm{x})^{2}}
$$

Hence, we can write

$$
\frac{T(t+\Delta t)-T(t)}{\Delta t}=\alpha \frac{T(x+\Delta \mathbf{x})-2 T(x)+T(x-\Delta \mathbf{x})}{(\Delta \mathbf{x})^{2}}
$$

The heat equation is discretized now.
Let's rearrange this equation.

$$
T(t+\Delta \mathrm{t})-T(t)=\frac{\alpha \Delta \mathrm{t}}{(\Delta \mathrm{x})^{2}} *\{T(x+\Delta \mathrm{x})-2 T(x)+T(x-\Delta \mathrm{x})\}
$$

Therefore,

$$
T(t+\Delta \mathrm{t})=T(t)+\frac{\alpha \Delta \mathrm{t}}{(\Delta \mathrm{x})^{2}} *\{T(x+\Delta \mathrm{x})-2 T(x)+T(x-\Delta \mathrm{x})\}
$$

Let's say $\frac{\alpha}{(\Delta \mathrm{x})^{2}} *\{T(x+\Delta \mathrm{x})-2 T(x)+T(x-\Delta \mathrm{x})\}=\delta T$
$\therefore T(t+\Delta \mathrm{t})=T(t)+\delta T^{*} \Delta \mathrm{t}$

Now let's try to calculate the temperature T of the i-th (located at x) element at any instant of time $t+\Delta t$.

$$
T(i, t+\Delta t)=T(i, t)+\frac{\alpha \Delta t}{(\Delta \mathbf{x})^{2}} *\{T(i+1, t)-2 T(i, t)+T(i-1, t)\}
$$

We can see that to calculate the temputure T of i-th element at any instant $t+\Delta$ t we need to know the temputure of i-th element, ($i+1$)th element and ($\mathrm{i}-1$)th element at a previous instant t .

For eaxmple, if we want to calculate the temputure T of 5 th element at any instant $t+\Delta$ t we need to know the temputure of 5th element, 6th element and 4th element at a previous instant t.

We have assumed that $\Delta \mathrm{t}=\mathrm{dt}=0.1$
So, if we know the temperature of all the elements at $t=0$, then we can calculate the temperature of all elements at $\mathrm{t}=0+0.1=0.1$

Using the temperature data at $\mathrm{t}=0.1$ we can calculate the temperature of all elements at $\mathrm{t}=0.1+0.1=0.2$

So, step by step we can calculate temperature of all the elements at any instant of time t.

Again,

$$
\begin{aligned}
& T(i, t+\Delta \mathrm{t})=T(i, t)+\delta \mathrm{T}(\mathrm{i}, \mathrm{t})^{*} \Delta \mathrm{t} \\
& T(i, t+\Delta \mathrm{t})=T(i, t)+\frac{\alpha \Delta \mathrm{t}}{(\Delta \mathrm{x})^{2}} *\{T(i+1, t)-2 T(i, t)+T(i-1, t)\} \\
& \therefore \boldsymbol{\delta} \mathbf{T}(\mathbf{i}, \mathrm{t})=\frac{\boldsymbol{\alpha}}{(\Delta \mathbf{x})^{2}} *\{\boldsymbol{T}(\boldsymbol{i}+\mathbf{1}, \boldsymbol{t})-\mathbf{2 T}(\boldsymbol{i}, \boldsymbol{t})+\boldsymbol{T}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{t})\}
\end{aligned}
$$

When $i=0 ; i+1=1, i-1=-1$

$$
i=1 ; i+1=2, i-1=0
$$

$$
\begin{aligned}
& i=8 ; i+1=9, i-1=7 \\
& i=9 ; i+1=10, i-1=8
\end{aligned}
$$

Hence, for $\mathrm{i}=1$ to $\mathrm{i}=\mathrm{n}-2=8 \delta \mathrm{~T}(\mathrm{i}, \mathrm{t})$ can be calculated inside the loop incrementing [i].

For $\mathrm{i}=0$ and $\mathrm{i}=\mathrm{n}-1=9 \delta \mathrm{~T}(\mathrm{i}, \mathrm{t})\{\delta \mathrm{T}(0, \mathrm{t}) \& \delta \mathrm{~T}(9, \mathrm{t})\}$ should be calculated separately.
$\delta \mathrm{T}(0, \mathrm{t})=\frac{\alpha}{(\Delta \mathrm{x})^{2}} *\{T(1, t)-2 T(0, t)+T(-1, t)\}$
$\delta \mathrm{T}(9, \mathrm{t})=\frac{\alpha}{(\Delta \mathrm{x})^{2}} *\{T(10, t)-2 T(9, t)+T(8, t)\}$
But there is no such element denoted by $\mathrm{i}=-1$ or $\mathrm{i}=10$!
But we can easily understand that the element $\mathrm{i}=-1$ (if it exists) must be located at left of the element $i=0$. So, the element $i=-1$ must be located inside the left boundary of the wall. Left boundary of the wall has surface temperature $T(0, t)=50^{\circ} \mathrm{C}$.
$\therefore T(-1, t)=\mathrm{T}(0, \mathrm{t})=50^{\circ} \mathrm{C}$
Similarly, we can easily understand that the element $\mathrm{i}=10$ (if it exists) must be located at right of the element $i=9$. So, the element $i=10$ must be located inside the right boundary of the wall. Right boundary of the wall has surface temperature $T(L, t)=25^{\circ} \mathrm{C}$.
$\therefore T(10, t)=\mathrm{T}(\mathrm{L}, \mathrm{t})=25^{\circ} \mathrm{C}$
We now know how to approach 1D heat equation numerically.
We should choose the number of elements (n) depending upon the length (L) of the wall. (**Smaller value of Δx means higher accuracy)

We should also choose the value of Δt as small as possible. (**Smaller value of Δt means higher accuracy)
$T(i, t=0)=T_{0}\{f o r ~ a l l ~ v a l u e s ~ o f ~ i\} ~ w i l l ~ b e ~ p r o v i d e d ~ a s ~ i n i t i a l ~ c o n d i t i o n . ~$
Using this data $\mathrm{T}(\mathrm{i}, \mathrm{t}=0.1)$ \{for all values of i$\}$ can be calculated easily.
So, we will need a loop incrementing [t] up to the desired value of t (Let's say 10 sec). Inside this loop incrementing [t] we will also need a loop incrementing [i] which in turn will calculate the values of $T(i, t)$ for all the elements.

Without wasting any more time let's select any of our preferred language (C, Fortran, Matlab, Python) and develop the source code.

Python Code

\#1D Heat Diffusion Equation
import numpy as np
import matplotlib.pyplot as plt

L=0.2 \#Thickness of wall/rod
$\mathrm{n}=20$ \#no of elements in wall/rod
T0=0 \#Initial temperature
TRL=50 \#Surface temperature at left side of the wall
TRR=25 \#Surface temperature at right side of the wall
alpha=0.0001 \#Thermal diffusivity, material specific
$\mathrm{dx}=\mathrm{L} / \mathrm{n}$ \#Element size
t_final=60 \#Final time at which you want to see the temperature distribution
$\mathrm{dt}=0.1$ \#Time interval
$\mathrm{x}=\mathrm{np}$. linspace(dx/2,L-dx/2,n) \#Constructing position matrix

T=np.ones(n)*TO \#Constructing Temperature matrix at any instant of time
$\mathrm{dT}=\mathrm{np} . \mathrm{empty}(\mathrm{n})$ \#Constructing matrix to compute increase in temperature along x -axis
$\mathrm{t}=\mathrm{np}$. arange(0,t_final,dt) \#Constructing time matrix
for j in range(1,len(t$)$):
plt.clf()
for i in range $(1, \mathrm{n}-1)$:
$d T[i]=a l p h a *((T[i+1]-2 * T[i]+T[i-1]) / d x * * 2)$
$d T[0]=$ alpha*((T[1]-2*T[0]+TRL)/dx**2)
$d T[n-1]=$ alpha*((TRR-2*T[n-1]+T[n-2])/dx**2)
$\mathrm{T}=\mathrm{T}+\mathrm{dT}^{*} \mathrm{dt}$
plt.figure(1)
plt.title("Time=",loc='left')
plt.title((j+1)*dt,loc='center')
plt.title("sec",loc='right')
plt.plot(x, T)
plt.axis([0,L,0,50])
plt.xlabel('Distance (m)')
plt.ylabel('Temperature (C)')
plt.show()
plt.pause(0.01)
print('Thanks')

Output

